A real-time topography of maximum contact pressure distribution at medial tibiofemoral knee implant during gait: Application to knee rehabilitation

نویسندگان

  • Marzieh Mostafavizadeh Ardestani
  • Mehran Moazen
  • Zhenxian Chen
  • Jing Zhang
  • Zhongmin Jin
چکیده

Knee contact pressure is a crucial factor in the knee rehabilitation programs. Although contact pressure can be estimated using finite element analysis, this approach is generally time-consuming and does not satisfy the real-time requirements of a clinical set-up. Therefore, a real-time surrogate method to estimate the contact pressure would be advantageous. This study implemented a novel computational framework using wavelet time delay neural network (WTDNN) to provide a real-time estimation of contact pressure at the medial tibiofemoral interface of a knee implant. For a number of experimental gait trials, joint kinematics/kinetics and the resultant contact pressure were computed through multi-body dynamic and explicit finite element analyses to establish a training database for the proposed WTDNN. The trained network was then tested by predicting the maximum contact pressure at the medial tibiofemoral knee implant for two different knee rehabilitation patterns; “medial thrust” and “trunk sway”. WTDNN predictions were compared against the calculations from an explicit finite element analysis (gold standard). Results showed that the proposed WTDNN could accurately calculate the maximum contact pressure at the medial tibiofemoral knee implant for medial thrust ( RMSE =1.7MPa, =6.2% and =0.98) and trunk sway ( RMSE =2.6MPa, =9.3%, =0.96) much faster than the finite element method. The proposed methodology could therefore serve as a cost-effective surrogate model to provide real-time evaluation of the gait retraining programs in terms of the resultant maximum contact pressures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gait modification and optimization using neural network-genetic algorithm approach: Application to knee rehabilitation

Gait modification strategies play an important role in the overall success of total knee arthroplasty. There are a number of studies based on multi-body dynamic (MBD) analysis that have minimized knee adduction moment to offload knee joint. Reducing the knee adduction moment, without consideration of the actual contact pressure, has its own limitations. Moreover, MBD-based framework that mainly...

متن کامل

Knee Cartilage Thickness, T1ρ and T2 Relaxation Time Are Related to Articular Cartilage Loading in Healthy Adults

Cartilage is responsive to the loading imposed during cyclic routine activities. However, the local relation between cartilage in terms of thickness distribution and biochemical composition and the local contact pressure during walking has not been established. The objective of this study was to evaluate the relation between cartilage thickness, proteoglycan and collagen concentration in the kn...

متن کامل

Contribution of tibiofemoral joint contact to net loads at the knee in gait.

Inverse dynamics analysis is commonly used to estimate the net loads at a joint during human motion. Most lower-limb models of movement represent the knee as a simple hinge joint when calculating muscle forces. This approach is limited because it neglects the contributions from tibiofemoral joint contact forces and may therefore lead to errors in estimated muscle forces. The aim of this study w...

متن کامل

Medial knee loading is altered in subjects with early osteoarthritis during gait but not during step-up-and-over task

This study evaluates knee joint loading during gait and step-up-and-over tasks in control subjects, subjects with early knee OA and those with established knee OA. Thirty-seven subjects with varying degrees of medial compartment knee OA severity (eighteen with early OA and sixteen with established OA), and nineteen healthy controls performed gait and step-up-and-over tasks. Knee joint moments, ...

متن کامل

Anterior Cruciate Ligament Injury: Compensation during Gait using Hamstring Muscle Activity

Previous research has shown that an increase in hamstring activation may compensate for anterior tibial transalation (ATT) in patients with anterior cruciate ligament deficient knee (ACLd); however, the effects of this compensation still remain unclear. The goals of this study were to quantify the activation of the hamstring muscles needed to compensate the ATT in ACLd knee during the complete ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 154  شماره 

صفحات  -

تاریخ انتشار 2015